Linear Algebra I

30/01/2014, Thursday, 9:00-12:00

You are NOT allowed to use any type of calculators.
$1(12+3=15 \mathrm{pts})$
Linear equations

Consider the linear equation

$$
\left[\begin{array}{rrrr}
1 & 3 & 5 & -2 \\
1 & 4 & 6 & -2 \\
-1 & -1 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
b-2 a
\end{array}\right]
$$

where a and b are real numbers.
(a) Find all values of a and b for which the equation is consistent. For these values find the general solution of the equation.
(b) Find all values of a and b for which the equation has a unique solution.

REQUIRED KNOWLEDGE: linear equations, Gauss-elimination, row reduced echelon form.

Solution:

We begin with performing row operations in order to put the augmented matrix into the row echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 3 & 5 & -2 & a \\
1 & 4 & 6 & -2 & b \\
-1 & -1 & -3 & 2 & b-2 a
\end{array}\right] \xrightarrow{\text { 2nd }=-1 \times \mathbf{1 s t} \mathbf{2 n d}}\left[\begin{array}{rrrrrr}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & b-a \\
-1 & -1 & -3 & 2 & b-2 a
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & b-a \\
-1 & -1 & -3 & 2 & b-2 a
\end{array}\right] \xrightarrow{\text { 3rd=1st+3rd }}\left[\begin{array}{rrrrr}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & b-a \\
0 & 2 & 2 & 0 & b-a
\end{array}\right]} \\
& {\left[\begin{array}{rrrrr}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & b-a \\
0 & 2 & 2 & 0 & b-a
\end{array}\right] \xrightarrow{\mathbf{3 r d}=-2 \times \mathbf{2 n d}+\mathbf{3 r d}}\left[\begin{array}{lllll}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & b-a \\
0 & 0 & 0 & 0 & a-b
\end{array}\right] .}
\end{aligned}
$$

1a: It is consistent if and only if $a-b=0$, i.e. $a=b$. For these values, we can proceed with putting the augmented matrix into the row reduced echelon form in order to solve the equations:

$$
\left[\begin{array}{rrrrr}
1 & 3 & 5 & -2 & a \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\mathbf{1 s t}=-3 \times \mathbf{2 n d}+\mathbf{1 s t}}\left[\begin{array}{rrrrr}
1 & 0 & 2 & -2 & a \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, x_{1} and x_{2} are the lead variables and x_{3} and x_{4} are the free. Then, the solution can be given as

$$
x_{1}=a-2 x_{3}+2 x_{4} \quad \text { and } \quad x_{2}=-x_{3} .
$$

1b: When $a \neq b$, the equations are inconsistent. When $a=b$, there are two free variables. Therefore, the system has never a unique solution.

Let

$$
M=\left[\begin{array}{cc}
A & B \\
C & I
\end{array}\right]
$$

where all four blocks are $n \times n$ matrices.
(a) Show that M is nonsingular if and only if $A-B C$ is nonsingular.
(b) Let $D=A-B C$. Suppose that D is nonsingular. Show that

$$
M^{-1}=\left[\begin{array}{cc}
D^{-1} & -D^{-1} B \\
-C D^{-1} & I+C D^{-1} B
\end{array}\right]
$$

REQUIRED KNOWLEDGE: nonsingular matrices, inverse of a matrix, partitioned matrices.

Solution:

2a: Let $z \in \mathbb{R}^{2 n}$ be a vector such that $M z=0$. Partition z as follows:

$$
z=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $x, y \in \mathbb{R}^{n}$. Then, we have

$$
0=M z=\left[\begin{array}{cc}
A & B \\
C & I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
A x+B y \\
C x+y
\end{array}\right]
$$

Hence, we get $A x+B y=0$ and $C x+y=0$. From the latter, we get $y=-C x$ and hence $(A-B C) x=0$ from the former. Then, we can conclude that M is nonsingular if and only if so is $A-B C$.

2b: Note that

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & B \\
C & I
\end{array}\right]\left[\begin{array}{cc}
D^{-1} & -D^{-1} B \\
-C D^{-1} & I+C D^{-1} B
\end{array}\right] } & =\left[\begin{array}{cc}
A D^{-1}-B C D^{-1} & -A D^{-1} B+B+B C D^{-1} B^{-1} \\
C D^{-1}-C D^{-1} & -C D^{-1} B+I+C D^{-1} B
\end{array}\right] \\
& =\left[\begin{array}{cc}
(A-B C) D^{-1} & -(A-B C) D^{-1} B+B \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
\end{aligned}
$$

since $D=A-B C$. Consequently, we have

$$
M^{-1}=\left[\begin{array}{cc}
D^{-1} & -D^{-1} B \\
-C D^{-1} & I+C D^{-1} B
\end{array}\right]
$$

Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times r}$, and $C=A B$. Show that
(a) the column space of C is a subspace of the column space of A.
(b) the row space of C is a subspace of the row space of B.
(c) $\operatorname{rank}(C) \leqslant \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

REquIRED KnOWLEDGE: column space and rank of a matrix

Solution:

3a: Let $y \in R(C)$. Then, there exists $x \in \mathbb{R}^{r}$ such that $y=C x=A B x$. Hence, we see that $y \in R(A)$. Therefore, $R(C) \subseteq R(A)$.

3b: Note that $C^{T}=B^{T} A^{T}$. By applying the previous result, we get $R\left(C^{T}\right) \subseteq R\left(B^{T}\right)$. In other words, the row space of C is a subspace of the row space of B.

3c: Note that $\operatorname{rank}(C)=\operatorname{dim}(R(C))=\operatorname{dim}\left(R\left(C^{T}\right)\right)$. From 3a and 3b, we have

$$
\begin{aligned}
& \operatorname{rank}(C)=\operatorname{dim}(R(C)) \leqslant \operatorname{dim}(R(A))=\operatorname{rank}(A) \\
& \operatorname{rank}(C)=\operatorname{dim}\left(R\left(C^{T}\right)\right) \leqslant \operatorname{dim}\left(R\left(B^{T}\right)\right)=\operatorname{rank}(B) .
\end{aligned}
$$

By combining these inequalities, we obtain $\operatorname{rank}(C) \leqslant \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

Consider the vector space of $k \times k$ matrices, i.e. $\mathbb{R}^{k \times k}$.
(a) Let $\lambda \in \mathbb{R}$ and

$$
V_{\lambda}=\left\{A \in \mathbb{R}^{k \times k} \mid \lambda \text { is an eigenvalue of } A\right\} .
$$

Show that V_{λ} is not a subspace of $\mathbb{R}^{k \times k}$.
(b) Let $x \in \mathbb{R}^{k}$ be a nonzero vector and

$$
V_{x}=\left\{A \in \mathbb{R}^{k \times k} \mid x \text { is an eigenvector of } A\right\} .
$$

Show that V_{x} is a subspace of $\mathbb{R}^{k \times k}$.

REQUIRED KNOWLEDGE: vector spaces, and subspaces.

Solution:

4a: Suppose that $\lambda \neq 0$. Then, V_{λ} is closed neither under scalar multiplication nor vector addition. To verify the latter, observe that $0_{k \times k} \notin V_{\lambda}$. To verify the former, observe that λ is not an eigenvalue of $A+A=2 A$ even if it is an eigenvalue of A. Suppose, now, that $\lambda=0$. Then, V_{0} is closed under scalar multiplication. However, it is not so under vector addition. For instance, one can take $k=2, A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and observe that $A, B \in V_{0}$ but $A+B \notin V_{0}$.

4b: Note first that the zero (or the identity) matrix belongs to V_{x}. As such, V_{x} is a nonempty set. To show that it is closed under scalar multiplication. Let $A \in V_{x}$ and $\alpha \in \mathbb{R}$. Note that x is also an eigenvector of αA. For the closedness under vector addition, let $A, B \in V_{x}$ and note that x is an eigenvector of $A+B$.

Consider the matrix

$$
M=\left[\begin{array}{rrr}
0 & -2 & 1 \\
1 & 3 & -1 \\
0 & 0 & \alpha
\end{array}\right]
$$

where α is a real number.
(a) Find the determinant of M.
(b) Find all values of α for which M is nonsingular.
(c) Find the eigenvalues of M. [Hint: α is an eigenvalue.]
(d) Find all values of α for which M is diagonalizable.
(e) Let $\alpha=1$. Find a nonsingular matrix T and a diagonal matrix D such that $M=T D T^{-1}$.

REQUIRED KNOWLEDGE: determinants, eigenvalues, and diagonalization.

SOLUTION:

5a: By using cofactor expansion with respect to the last row, we get

$$
\operatorname{det}(M)=\alpha \operatorname{det}\left(\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right]\right)=2 \alpha
$$

$\mathbf{5 b}$: A square matrix is nonsingular if and only if its determinant is not zero. Therefore, M is nonsingular if and only if $\alpha \neq 0$.

5c: Note that

$$
\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & -2 & 1 \\
1 & 3-\lambda & -1 \\
0 & 0 & \alpha-\lambda
\end{array}\right]\right)=(\alpha-\lambda) \operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right]\right)=(\alpha-\lambda)\left(\lambda^{2}-3 \lambda+2\right)
$$

Therefore, the eigenvalues can be found as $\lambda_{1}=\alpha, \lambda_{2}=1$, and $\lambda_{3}=2$.
$\mathbf{5 d}$: An $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvalues. In articular, this holds whenever the matrix has distinct eigenvalues. Therefore, we can conclude that M is diagonalizable if $\alpha \notin\{1,2\}$. Then, we need to check two cases: $\alpha=1$ and $\alpha=2$. For the case $\alpha=1$, we can find the eigenvectors corresponding the eigenvalue $\lambda=1$ by solving the following linear equation:

$$
0=(M-I) x=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

This yields two linearly independent eigenvalues, for instance, $x=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $x=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. As such, one can conclude that M is diagonalizable if $\alpha=1$. For the case $\alpha=2$, we can find the eigenvectors corresponding the eigenvalue $\lambda=2$ by solving the following linear equation:

$$
0=(M-2 I) x=\left[\begin{array}{ccc}
-2 & -2 & 1 \\
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

This would yield at most one linearly independent eigenvector, say $x=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. Hence, we can conclude that M is not diagonalizable whenever $\alpha=2$. Consequently, M is diagonalizable if and
only if $\alpha \neq 2$.
5e: For $\alpha=1$, we have already found two linearly independent eigenvalues corresponding to the eigenvalue $\lambda=1$ in the previous problem. For the eigenvalue $\lambda=2$, we can find an eigenvector by solving:

$$
0=(M-2 I) x=\left[\begin{array}{ccc}
-2 & -2 & 1 \\
1 & 1 & -1 \\
0 & 0 & -1
\end{array}\right] x
$$

This would yield, for instance, $x=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. Then, we can take

$$
T=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & 2 & 0
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Let x_{i} and y_{i} be real numbers with $i=1,2, \ldots, n$. Suppose that

$$
x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n}=0 .
$$

Show that the least squares solution of

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

is given by

$$
a=\frac{x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}}{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \quad \text { and } \quad b=0
$$

Required Knowledge: least-squares problem.

Solution:

Note that the normal equations to solve are given by

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]^{T}\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]^{T}\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]} \\
{\left[\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

Then, we have

$$
\begin{aligned}
{\left[\begin{array}{c}
a \\
b
\end{array}\right] } & =\left[\begin{array}{cc}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & 0 \\
0 & n
\end{array}\right]^{-1}\left[\begin{array}{c}
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} & 0 \\
0 & \frac{1}{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}}{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{n}} \\
0
\end{array}\right] .
\end{aligned}
$$

