
Linear Algebra I

30/01/2014, Thursday, 9:00-12:00

You are NOT allowed to use any type of calculators.

1 (12+3=15 pts) Linear equations

Consider the linear equation
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where a and b are real numbers.

(a) Find all values of a and b for which the equation is consistent. For these values find the
general solution of the equation.

(b) Find all values of a and b for which the equation has a unique solution.

Required Knowledge: linear equations, Gauss-elimination, row reduced echelon
form.

Solution:

We begin with performing row operations in order to put the augmented matrix into the row
echelon form:
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1a: It is consistent if and only if a� b = 0, i.e. a = b. For these values, we can proceed with
putting the augmented matrix into the row reduced echelon form in order to solve the equations:
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Therefore, x1 and x2 are the lead variables and x3 and x4 are the free. Then, the solution can be
given as

x1 = a� 2x3 + 2x4 and x2 = �x3.

1b: When a 6= b, the equations are inconsistent. When a = b, there are two free variables.
Therefore, the system has never a unique solution.



2 (7+8=15 pts) Partitioned matrices and matrix inverse

Let

M =


A B

C I

�

where all four blocks are n⇥ n matrices.

(a) Show that M is nonsingular if and only if A�BC is nonsingular.

(b) Let D = A�BC. Suppose that D is nonsingular. Show that
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Required Knowledge: nonsingular matrices, inverse of a matrix, partitioned ma-
trices.

Solution:

2a: Let z 2 R2n be a vector such that Mz = 0. Partition z as follows:
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where x, y 2 Rn. Then, we have
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Hence, we get Ax + By = 0 and Cx + y = 0. From the latter, we get y = �Cx and hence
(A � BC)x = 0 from the former. Then, we can conclude that M is nonsingular if and only if so
is A�BC.
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since D = A�BC. Consequently, we have
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3 (5+5+5=15 pts) Row and column spaces

Let A 2 Rm⇥n, B 2 Rn⇥r, and C = AB. Show that

(a) the column space of C is a subspace of the column space of A.

(b) the row space of C is a subspace of the row space of B.

(c) rank(C) 6 min{rank(A), rank(B)}.

Required Knowledge: column space and rank of a matrix

Solution:

3a: Let y 2 R(C). Then, there exists x 2 Rr such that y = Cx = ABx. Hence, we see that
y 2 R(A). Therefore, R(C) ✓ R(A).

3b: Note that C

T = B

T

A

T . By applying the previous result, we get R(CT ) ✓ R(BT ). In
other words, the row space of C is a subspace of the row space of B.

3c: Note that rank(C) = dim(R(C)) = dim(R(CT )). From 3a and 3b, we have

rank(C) = dim(R(C)) 6 dim(R(A)) = rank(A)

rank(C) = dim(R(CT )) 6 dim(R(BT )) = rank(B).

By combining these inequalities, we obtain rank(C) 6 min{rank(A), rank(B)}.



4 (6+9=15 pts) Vector spaces

Consider the vector space of k ⇥ k matrices, i.e. Rk⇥k.

(a) Let � 2 R and
V

�

= {A 2 Rk⇥k | � is an eigenvalue of A}.

Show that V
�

is not a subspace of Rk⇥k.

(b) Let x 2 Rk be a nonzero vector and

V
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= {A 2 Rk⇥k | x is an eigenvector of A}.

Show that V
x

is a subspace of Rk⇥k.

Required Knowledge: vector spaces, and subspaces.

Solution:

4a: Suppose that � 6= 0. Then, V
�

is closed neither under scalar multiplication nor vector
addition. To verify the latter, observe that 0

k⇥k

62 V

�

. To verify the former, observe that � is not
an eigenvalue of A+A = 2A even if it is an eigenvalue of A. Suppose, now, that � = 0. Then, V0

is closed under scalar multiplication. However, it is not so under vector addition. For instance,

one can take k = 2, A =


1 0
0 0

�
, and B =


0 0
0 1

�
and observe that A, B 2 V0 but A+B 62 V0.

4b: Note first that the zero (or the identity) matrix belongs to V

x

. As such, V
x

is a nonempty
set. To show that it is closed under scalar multiplication. Let A 2 V

x

and ↵ 2 R. Note that x is
also an eigenvector of ↵A. For the closedness under vector addition, let A, B 2 V

x

and note that
x is an eigenvector of A+B.



5 (2+2+4+6+6=20 pts) Determinants, eigenvalues, and diagonalization

Consider the matrix

M =
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1 3 �1
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where ↵ is a real number.

(a) Find the determinant of M .

(b) Find all values of ↵ for which M is nonsingular.

(c) Find the eigenvalues of M . [Hint: ↵ is an eigenvalue.]

(d) Find all values of ↵ for which M is diagonalizable.

(e) Let ↵ = 1. Find a nonsingular matrix T and a diagonal matrix D such that M = TDT

�1.

Required Knowledge: determinants, eigenvalues, and diagonalization.

Solution:

5a: By using cofactor expansion with respect to the last row, we get

det(M) = ↵ det(


0 �2
1 3

�
) = 2↵.

5b: A square matrix is nonsingular if and only if its determinant is not zero. Therefore, M is
nonsingular if and only if ↵ 6= 0.

5c: Note that

det(M � �I) = det(
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Therefore, the eigenvalues can be found as �1 = ↵, �2 = 1, and �3 = 2.

5d: An n⇥ n matrix is diagonalizable if and only if it has n linearly independent eigenvalues.
In articular, this holds whenever the matrix has distinct eigenvalues. Therefore, we can conclude
that M is diagonalizable if ↵ 62 {1, 2}. Then, we need to check two cases: ↵ = 1 and ↵ = 2. For
the case ↵ = 1, we can find the eigenvectors corresponding the eigenvalue � = 1 by solving the
following linear equation:
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This yields two linearly independent eigenvalues, for instance, x =
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can conclude that M is diagonalizable if ↵ = 1. For the case ↵ = 2, we can find the eigenvectors
corresponding the eigenvalue � = 2 by solving the following linear equation:
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This would yield at most one linearly independent eigenvector, say x =
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conclude that M is not diagonalizable whenever ↵ = 2. Consequently, M is diagonalizable if and



only if ↵ 6= 2.

5e: For ↵ = 1, we have already found two linearly independent eigenvalues corresponding to
the eigenvalue � = 1 in the previous problem. For the eigenvalue � = 2, we can find an eigenvector
by solving:
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6 (10 pts) Least squares problem

Let x
i

and y

i

be real numbers with i = 1, 2, . . . , n. Suppose that

x1 + x2 + · · ·+ x
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Required Knowledge: least-squares problem.

Solution:

Note that the normal equations to solve are given by
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